Big data is the field that deals with data sets that are too large or complex to be dealt with by traditional data-processing application software. The number of avenues that data can be gathered from is always growing and becoming easier to access the emergence of Data Science has been primarily due to the burgeoning growth of data across companies, internet, raising computer power, etc. For instance, today an estimated 2.5 quintillion bytes of data are created daily.
Enter data scientists. Big data has helped businesses see profit increases of 8-10 percent, making the ability to prepare, store, process and manage data highly desired traits. These data management skills are applicable across industries, including:
The three categories of big data
Preparing big data and its relevant models or algorithms is an important first step for data scientists. It involves liaising with key stakeholders in your business to find out exactly what they want from your analysis. This helps guide and inform how you execute the entire process, identifying what analytical tools are the best fit for your business’ goals.
This process is also your responsibility at the end of a project, as you will use data visualization tools to present findings. These tools enable data to be presented in more accessible and engaging forms like graphs, charts, and infographics.
As a data scientist, your storage solutions not only need to handle large amounts of data but must also have the flexibility to expand to accommodate the constant stream of new information. You need to ensure that storage provides the necessary high level of input/output operations per second (IOPS).
Whether opting for a hyper-scale computing environment used by large corporations or the more traditional clustered network attached storage (NAS), your job is to help the storage to handle large data sets quickly.
Data scientists also need to be able to process the data. With the need to divide bigger data streams into smaller and easier to decipher information — finding patterns and outliers that give your business key information. This can help identify cybersecurity threats and fraudulent behavior, finding irregular user actions among data patterns and halting threats before they happen. One data processing solution is via open-source software such as Hadoop, which is used by corporations including Yahoo, eBay, Amazon, Facebook, and Twitter.
Being a good data scientist means continually working your coding and business skills, such as stakeholder management and decision-making, your mathematical and statistical skills and your ability to communicate key data insights to your audiences effectively. A Master of Data Science can help you learn and realize that investing in a career and being good at what you do, like any career, is dependent on your ability to invest your time and energy to continually improve your skills. In data science, this can be everything from coding, business skills, and mathematical and statistical abilities. Like any career, your skillset is always a work in progress.
We pride ourselves on delivering innovative, digital experiences that make an impact.
Yes. We believe that creating memorable experiences are the best way to connect with your consumers.
Firefox customers ought to replace their browsers instantly to repair a vital zero-day vulnerability. Anyone…
Text messages are an anachronistic pain in the rear. They don’t support read receipts, group…
It is a hugely ambitious – some might say the megalomaniacal – project to create…
An app startup is all about a great idea, the success largely depends on your creativity.…
Designers have an anxious relationship with the idea of trends. On one hand, following the…
Apple has effectively heralded the end of iTunes by announcing the replacement by the three…